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Overview

• Inexact Newton method

• Linear multigrid preconditioner

• Pressure-correction smoother

• Numerical examples

• Implementation extensions
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Notation

The steady-state incompressible Navier-Stokes equations:

(uu)x + (uv)y − 1
Re∆u+ px = b1

(uv)x + (vv)y − 1
Re∆v + py = b2

ux + vy = 0.

Second-order centered discretization on a staggered grid produces a set of nonlinear
equations

F (u, v, p) =

 Q1[u] 0 Ghx
0 Q2[u] Ghy
Dhx Dhy 0


 u

v

p

−
 b1

b2

0


=

(
Q[u] ∇h

∇h· 0

)(
u
p

)
−
(

b
0

)
.
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Globalized Inexact Newton Method

ALGORITHM: INEXACT NEWTON BACKTRACKING (INB) [EW96]

Let x0, ε > 0, ηmax ∈ [0, 1), t ∈ (0, 1) and 0 < θmin < θmax < 1 be given.
Set k = 0.
While ‖F (xk)‖ > ε do:

Choose initial ηk ∈ [0, ηmax] and sk such that
‖F (xk) + F ′(xk)sk‖ ≤ ηk‖F (xk)‖.

While ‖F (xk + sk)‖ > [1− t(1− ηk)]‖F (xk)‖ do:
Choose θ ∈ [θmin, θmax].
Update sk ← θsk and ηk ← 1− θ(1− ηk).

Set xk+1 = xk + sk.

k = k + 1.

1999 ASCI Tri-lab Workshop on Solvers 3



Choosing the Forcing Terms

Several options for selecting {ηk} are available. This study uses

ηk = min

{
ηmax,

∣∣ ‖F (xk)‖ − ‖F (xk−1) + F ′(xk−1)sk−1‖
∣∣

‖F (xk−1)‖

}
.

To prevent ηk from getting too small too soon, this is safeguarded with

ηk = min
{
ηmax,max{ηk, η(1+

√
5)/2

k−1 }
}

if ηk ≥ threshold.

It can be shown that superlinear convergence of the inexact Newton method is
obtained with this choice of {ηk} [EW96].
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Linear Multigrid Preconditioner

Problem statement: solve a system of linear equations Lx = f .

ALGORITHM: LINEAR MULTIGRID V-CYCLE

PROCEDURE MG-V(h, Lh, xh, fh)
If h = hc then:

Solve Lhxh = fh.

else
Presmooth xh ←− xh + B(fh − Lhxh) ν1 times.
Set x2h = 0.
Restrict f2h = I2h

h (fh − Lhxh).
MG-V(2h, L2h, x2h, f2h).
Correct xh = xh + Ih2hx

2h.
Postsmooth xh ←− xh + B(fh − Lhxh) ν2 times.
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Intergrid Transfers on a Staggered Grid

Restriction Prolongation
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Pressure-correction Smoother

The SIMPLE method starts by solving

Q[u(n)
]u(n+1

2)
= b−∇h

p
(n)
.

Next, find a correction δp to the pressure, and also use its gradient to correct u(n+1
2).

u(n+1
2) ≈ D−1Qu(n+1

2) = D−1(b−∇hp(n))

u(n+1) ≈ D−1Qu(n+1) = D−1(b−∇hp(n+1))

δu ≡ u(n+1) − u(n+1
2)

= −D−1∇h
δp
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The Pressure Correction Step in SIMPLE

Apply∇h· to this and require∇h · u(n+1) = 0 to obtain

Sδp = −∇h · u(n+1
2)

where
S = −∇h ·D−1∇h

.

Once the pressure update and the velocity corrections are obtained, the pressure
and velocity fields are updated.

Practical implementations usually have to damp these corrections to stabilize the
algorithm.

1999 ASCI Tri-lab Workshop on Solvers 8



SIMPLE Uses a Projection

Let P = I + D−1∇hS−1∇h·. Then

u(n+1)
= Pu(n+1

2)

and

P2
= I + 2D−1∇h

S
−1∇h ·+

(
D−1∇h

S
−1∇h·

)(
D−1∇h

S
−1∇h·

)
= I + D−1∇h

S
−1∇h ·

= P

so P is a projection, but it is not an orthogonal projection w.r.t the standard inner
product.
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Newton-Krylov-Multigrid Methods

In a linear multigrid preconditioner with SIMPLE smoothing, compute Q[uk] after
each Newton step and use it in the multigrid preconditioner.1

Alternatively, a lower-order discretization QFOU [uk] can be computed in the setup
phase of the preconditioner. Storage for Q[uk] can be re-used in the preconditioner,
and Q[uk] can be restored after the preconditioner is applied.

Thus,

• storage overhead and initialization of the multigrid preconditioner is minimal; and

• no explicit representation of the Jacobian is used.

1Thanks to D. Knoll for pointing out this would work.

1999 ASCI Tri-lab Workshop on Solvers 10



Example: Bouyancy-driven Natural Convection on Ω = [0,1]2

(uu)x + (uv)y + px − 1
Re∆u = 0

(uv)x + (vv)y + py − 1
Re∆v −

Ra
Re2Pr

T = 0

ux + vy = 0

(uT )x + (vT )y − 1
RePr∆T = 0

u = v = 0 on ∂Ω

T (0, y) = 0, T (1, y) = 1 y ∈ [0, 1]

Ty(x, 0) = Ty(x, 1) = 0 x ∈ [0, 1]
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Performance Statistics for Ra = 100,000

Precondition with Q

SG-1 SG-2 SG-4 V(1,1) V(2,1) V(2,2) V(4,2) V(4,4)

NLI 3142 1165 660 552 327 318 250 303

NNI 30 31 33 18 17 17 19 16

NBT 8 8 6 3 3 3 3 2

T 2255 1009 847 604 460 542 564 879

Precondition with QFOU

SG-1 SG-2 SG-4 V(1,1) V(2,1) V(2,2) V(4,2) V(4,4)

NLI 3341 1182 665 593 304 277 232 281

NNI 32 33 32 21 15 18 18 18

NBT 5 8 6 4 2 3 3 3

T 2409 996 831 598 407 437 507 775
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Convergence Histories for Ra = 100,000
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Performance Statistics for Ra = 1,000,000

Precondition with Q

V(1,1) V(2,1) V(2,2) V(4,2) V(4,4)

NLI 1355 695 1335 618 842

NNI 27 26 27 27 27

NBT 6 5 5 5 5

T 7314 4068 9974 5482 10270

Precondition with QFOU

V(1,1) V(2,1) V(2,2) V(4,2) V(4,4)

NLI 1738 887 1055 809 1059

NNI 30 32 30 28 26

NBT 6 6 6 5 4

T 7395 4516 6756 6750 11250
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Convergence Histories for Ra = 1,000,000
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Extensions: Interfaces

We are currently extending these ideas to parallel computation of unsteady flow on
block structured adaptive grids. Implementation is based on the SAMRAIframework
and an interface between SAMRAIand PETSc.

Advance in Time

Wrapper

PETSc/SNES

Vec OperationsSAMRAI

Request data

Provide data

Preconditioner

Interface
PETSc-SAMRAI

Multilevel
C-SAFE

Request operation

Return result

User-defined
Operations
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Extensions: Parallel Solution of Navier-Stokes Equations

Migration of these methods to the SAMRAIframework required some minor
reorganization and creation of some additional C++ infrastructure. These efforts led
first to an unsteady solver, and subsequently to a parallel version that was also easily
extended to treat 3D problems.
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Extensions: Sensitivity Analysis

Objective: solve
F (t, y, y

′
, p) = 0

where p is a vector of parameters.

Maly-Petzold (1996) algorithm: set

G0 = F (t, y, y
′
, p) = 0

Gi =
∂F

∂y
si +

∂F

∂y′
s
′
i +

∂F

∂pi
= 0, i = 1, . . . ,m

where s =
(
∂y
∂p1

. . . ∂y
∂pm

)T
is a vector of sensitivities.

Strategy: estimate Gi with finite differences, and solve for y and s simultaneously in
time.
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Linear Structure

Let J∗ be the Jacobian of the complete system, then solve

J
∗
∆ = −G

y
k+1

= y
k

+ ∆0

s
k+1
i = s

k
i + ∆i, i = 1, . . . ,m

for a Newton-like iteration

• Advantage – uses the full Jacobian
. approximate its action with finite differences

• Disadvantage – preconditioning can be difficult since J∗ is complicated
. use a block diagonal preconditioner with the MG-SIMPLE preconditioner in

each block
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Sample Results
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Conclusions and Future Work

Multigrid methods are promising preconditioners for inexact Newton methods:

• highly effective;
• low startup costs;
• low storage overhead;
• can mix discretizations of different order;
• can reduce the storage overhead of an inexact Newton method.

Further work to be done:

• extension to SAMR methods through multilevel preconditioning;
• tuning parallel performance;
• further applications in sensitivity analysis and more realistic problems;
• improved, simplified user interfaces.
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